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1, Introduction and Summary

We consider in this paper two highly structured problems of optimal
stochastic control, The two problems will be precisely formulated, and
optimal control policies of a simple form will be explicitly computed, in
Sections 3 and 4, In this section we present an informal description of
each problem and its solution, suppressing all technical detail.

Let X = {X(t), t >0) be a Brownian Motion with starting state

T AR B bt oo Bk  wsiait ” Bioks-
)
;

x >0, drift , and variance 02 >0, Thus E[X(t)] = x + ut and
Var{X(t)] = cet. We define a control to be a non-decreasing process

Y = (Y(t), t >0}, with Y(0) >0, which is a non-anticipating functional

s 3 S e

{of X). Thus, for each t >0, the partial control history ({¥(u), 0 < u <t}
may depend on {X{u), 0 < u <t} and possibly on other information as well,

but it may not depend on {X(t+u) - X(t), u>0}. (See Section 2 for a

R Ry &

precise definition.) In each of our problems, the objective is to find

T

an input control Y and an output control Z which maximize expected

:“‘ .

discounted reward (over an infinite planning horizon) subject to the
constraint that W(t) = X(t) + Y(t) - 2(t) >0 for all t >0 (almost
surely), It is the hypothesized structure of costs and rewards that

differs in the two problems,
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Given a constant k > 1, the objective in our first problem is tc
find an admissible control policy (Y,Z) which maximizes

X x
E[2(0) + [ e ¥ dz(t)] - kE[Y.0 + [ e ¥ dvic)
‘ 0

0
where & >0 1is the interest rate, By way of interpretation, we 1m3agine
a stcrage system {such as an 1inventory or a bank account) whose content
avolves as the Brownian Motion X in the absence of any controi. In
particular, X(0) represents the initial content of the system, The
controller may at any time withdraw material from the systew, and 2.t;
represents the total withdrawal during the interval [O0,t], or cumulative
output up to time t, He receives a reward of one dollar for each uait
of material withdrawn. 1Tf the content of the system falls to zerc, howsver,
then the controller is obliged to inject material intoc the system so 3¢
to keep the net content positive, and he incurs a cost of k > 1 dollars
for each unit of material injected We interpret Y t° as the total
inj2ction during the interval ({O0,t], or the cumulative input up to time

t We call W = X+Y-Z the controiled process and X the uncontrolled

process.

In Section * it will be shown that an optimal policy for this
first problem 1s the minimal pair of controls (Y,Z) which achieves
0 < Wt) <8 for all t >0 (almost surely,, where S is the unigue
positive solution of a certain transcendental equation. Thus the
controller should withdraw only as much material as is required to keep

the net content below S, and he should 1nject the minimum amount

necessary to keep the net ccntent positive. The optimal controls are

oty
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explicitly described in terms of certain maximum and minimum functionals
applied to X, and the corresponding controlled process W behaves as
the Brownian Motion X modified by (instantaneously) reflecting barriers
at zero and S. The optimal controls are (almost surely) continuous but
not absolutely continuous, due to the unbounded variation of Brownian
paths, Thus one cannot describe the optimal policy in terms of input and
output rates. Still it is in a certain sense a bang-bang policy, as

one would expect with our linear cost structure.

Our second problem differs only in that we require the input control
Y to be a (random) step function, and we assume that a fixed change of
K > 0 doliars is incurred each time an input jump occurs, (This is
additional to the proportional charge of k dollars per unit of input,)
In Section 4 it will be shown that the optimal policy is as follows. Each
time that the net content W hits zero, the controller increases the
cumulative input Y by s units, where s is the unique positive solu-
tion of a certain transcendental equation. Between these input events,
the controller increases the cumulative output 2 by the minimum amounts
necessary to keep the controlled process below level s+8, where the
positive constant S is the same as in our first problem,

Section 2 contains a number of formal definitions and some
important preliminary propositions. The central results are stated and
proved in Sections 3 and 4, In Section 5 we discuss the application of
our results to problems of inventory control and stochastic cash manage-
ment. In particular, it is shown that our formulation need be altered
only trivially to include problems where the controller continuously

incurs holding costs at a rate proportional to the net content of the
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system W(t). We also discuss the relationship between our model(s)
and other (approximate) diffusion formulations that have been suggested
for such problems. In Section 6 we discuss the difference between our

formulation and various other theories of optimal stochastic control,

i 2, Preliminaries

Let R= (o, ), R" = [0, @), T={0, 1, ...} and I" = {1,2,...].

g

Throughout the paper, let & >0, u €RR, 02 >0, k>1 and K >0 be

fixed constants. We assume a measurable space (Q,¥) on which is

B R T S

defined a family of probability measures {Px’ x € R} and a process

X = {X(t), t >0} such that X is Brownian Motion with drift ,

EY Y TN

variance o= > 0, and starting state x with respect to P (x € R).
X
We denote by Ex the expectation operator associated with Px. The

following proposition follows easily from standard properties of

P

Brownian Motion.

~

- )
Proposition 1. Ex suple t X(t):t >0} <o, x ¢R,

e L R

| We further assume the existence of an increasing family of sub-o-
L algebras [Et’ t >0} such that X 1is adapted to (gt} and
X(t+u) - X(t) is independent {with respect to Px for all x €R)
of zt for all t >0 and u >0, We say that a random variable T

is a stopping time if PXI'O S T<w) =1 for all x ¢R and :

(T<t)le 3, for all t > 0. Using the separability of X and our
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assumptions on [3t}, one easily obtains the following by a standard type

of argument.

Proposition 2, If T 1is a stopping time and Z is measurable 3T

for all x €IR,
P2 + X(Tet) S ylE) = Py g gy (X(2) <1, t>0, y€ER .

Proposition 3. If T 1is a stopping time, then

Proof: Let f(x) =CE_ [ e
*o

A e T T
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& [ %K) a+ B KT = x+ull- A/, xeR
0

ot X(t)dt, x € R. Then

[e] 00

f(x) =af e Ot E X(t) =af e-at(x+ut) =X + u/a
0 0

by Fubini's Theorem, Using this and Proposition 2, we have

T T
x +u/o-E [ & x(r)de - £(x) - E. [ e ¥ x(t)dt
X ) X 0
- E 4 e ™ x(t) at - E (T Ex[(f) e % X(1+t)aelg.])

e -
Ex e F(X(T)) = Ex e

which completes the proof.
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If f is a real-valued function on some interval subset of R,

we define JMf(x) = pf'(x) + %-02 f'"(x) for all x such that f£'(x) and

f"(x; exist.

Proposition 4, Let f :IR — TR be non-decreasing and twice continuously

e A A o VT

R : differentiable with A - Of < 0. Assume x €IR and let T* and T* be

% : stopping times with PX{T’k < T*} = 1. Finally, let Z be measurable gk*é
; : Then

! (1 g e gz .o xT)) < E e M Rz X1,

3 N

% if both expectations exist and are finite,

kS

Proof: Assume first that £ and its first two derivatives are bounded,

R

We begin by proving a slight generalization of the discounted form of

Dynkin's ideatity, c,f, Breiman (1968), equaticn (16 61) Let

B AT

gix, - 8 %x: - afx;, for x €¢ R, Then a standard result for Markov

e -

processes (1ia this case the Brownian Motion X with generator &% and

their resolvants gives us

!
:
§

-t . N
g(X(t))dt

b

cf Breimsn ( 1968)

, Theorem 15.51. Since Z 1s measurable ET , we
*

can combine ' with Proposition 2 to obtain

o




(2] 0
- , . - -
(3) B, [ e % g2+ X(t))de = E e e [ e gz 4 (T et))de
T 0
*
aTx ot
= Efe Ex[é e gz + X(T*+t))dtl3&*]}
(o]
-QaT -0t
=E e *E [ e g(X(t))de
X Z+X(T*) 0
-y , 3
= EX e f(Z + X(T*)) °
But Z is measurable 3*' also, so an identical argument gives :
T g
+ 53
© lar ar’ *
(3 E [, gz X)) =E e £z +XT)) .

Subtracting (3) from (4) gives

T

*
- * -
e 5z . xT)) - e T gz + X(T,)))

T* g
-k [ % gz 4 X(1)) ac . 4
e P
The right side is non-positive, since g(x) <0 for all x €R, so the f
proposition is proved, %
13
<

If either f or one of its derivatives is unbounded, we can easily
construct a sequence of bounded functions fn having two bounded con-

tinuous derivatives and such that fn(x) = f(x) if [£(x)| <n and

+

lfn\ < {f], n¢ I". (The construction is particularly easy with our

assumption that f 1is monotone,) We have shown that (1) holds with fn
in place of f, and obviously £ - f, so (1) holds by dominated con-

vergence if both expectations exist and are finite, This completes the

proof.
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We define & nun-anticipating functional to be a process

{Zit', t 2 0: on (0,3 taking values in D[0,») and such that

Zit; is measurable gt for each t > 0, We define C to be the set

P Y TR AT 1, N F NP
~N

of non-anticiparing functionals Z which are non-decreasing with

;
2.0, >0, and we dofine cx to be the set of Z ¢ ¢ such that
% =
§ Ex R-Z+ -« (x R , where
:
¢ o
R'Zi - wuf e " 2(t)de AN
0
.-t
Then Px;d Zt+ -0 as t —w} =1 for all Z ¢ CX, and path-
wise Riemsnn-Stieltjes) integration by parts gives
oo
. . o . -at
P R'Z) - 2/0, v+, e dz(t) ) = 1 for all Z € ¢
X . X
0
We define § to be the set of (random) step functions in € having
only finit«ly many jumps 1n any finite 1nterva1, and we take @x to
*
be the set of Z . g N C, such that EX R (Z) <= (x (R), where
X
. - QT (Z)
R (Z) = i A ; N n
N t } 1{2(0) >0} + I € []
? n=1
i
’ ) th . .
H i where Tn‘é‘ 1> the n jump time of 2,
[
o

. - B
Propositin  F_seple’ l Z(t) it 201 <= if xCR, Z.C,.
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Proof: Since Z 1is non-decreasing, we have

x a o
[ oae Z(u)du > [ ae’
t t

“ozieyau = &% z(n)

Taking the sup of each side over all t > 0, the left side becomes

R(Z), and the proposition follows from the fact that EX R(Z}) < w,

Proposition &, Suppose f : R’ - IR is non-decreasing with f(x) < asbx

for some b >0, that x >0, and that Y Z Cx and Z ¢ Cx satisfy

i
—

(5) PX{X(t) +¥(t) - 2(t) >0 for all t >0}

at

Then E_ sup{e” ™ £(X(t) + Y(t) - Z(t) : t > 0} < .

Proof: Since f is non-decreasing and Z(-) > 0, we have

-Gt

< e ER(E) 4 Y(E) - 2(r) < &

O~
~Z
m
(a2}
(=}
e

fX(t) + Y(t))
< e-at[a + bX(t) + bY{t)]

almost surely (with respect to Px) for all t > 0. The desired result

then follows immediately from Propositions 1 and 5.

Proposition 7. Let f, x, Y and Z be as in Proposition 6, If
{T , n 1} are non-negative and Px{Tn —w} = 1 then

n’

Ex Q-U'-Tn f{Xi Tn) + Y(Tn) - Z(Tn)) -0 as n - w .

0
7
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Proof: From standard properties of Brownian Motion and the definition

F : -Jt : - , !
" cf Cx it ftollows that e X(t) -0 and e Yity 0 as U o

(o Rt i AR M o |

st

almost surely {with respect to PX). Using the bound '+.} and the fact

that Tn — « 2lmost surely we then have

4 aT . N
; e” M fIX(T ) « YT, - 2(T); -0 as 0 - -
: n a n
E almost surely The desired result then follows, using Preposition & ;
2 and dominated convergence, 1
K ::
b ¢ =
¢ ; The Control Problem with no Fixed Charges
! For our first problem, we define an x-admissible policy (x > 0) =
; to be a pair of controls Y, 2 ¢ Cx satisfying () We say that an ‘f
: N L F * . Rk
: x-admissibhle policy (Y , 2 ¢ 1is x-optimal /x >0} it, for every
'i{ other x-sdmissible policy (Y,Z2),
L
|
i x * .
F | E RiY ! - kE R(Z ) >E_R(Y) - kE_ R(Z}
& X X - ’x X
¢ i
X
* »
E We now construct a specific policy Y | 2 ) which will eventually
: o _ 2 2 2 170
he o sbhown  x-optimal for all x > 0. Let 3 . /v and y SR D T | o
; md let S be the unique positive solution of
<
Ly 8 ) - =398 .
; e oe A LY +D) e broed - 2ky
1
o
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It is easy to verity that the left side of (7] is continuous, convex and

strictly increasing in 5, with valu2

oo T

0 0" and then

0 and WO(O) 0,
define

C b
nel

[

iy

tor

there is thus a unique positive solution,

S

Z 't\ = |s '!Xﬁ { 0 B
2nslt PSUP Ao, VW -
W, [ty =X t) - Z. -
Zns 1Y ) 2n+1( / Snatt s
T Sinfi{t > 0: W, S 0
el - 204
Ly = XOT. Loty - X7 3
enes “nel t) X T'.'ntl"
ot —inf{XB *&’”> 0~ u-
W Y ; LI ¢
S DR X20+J b ez
, inf{t =0 W ot
<My CNrs
Also, Lot Y. L ., L Yootz )
is easy to show Lhat
PO ) )
\.( TO < T1 1 ) 1

at

With

n 0

and

and

S

Since k> 1,
X(0) % > 0, we take
, 1, ... wu recursively

t -0,
T t >0,

Lt >0,
1Qu?l Tln En.l 7

L o,

t > 0

Lt >0,
rf{'n +e )[‘c'n‘ 1 “ne2
0 1tor all >0, Tt
tor all «x >0
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Then for n . I and t ¢ [0, T ) we define

n+l

. n

Y (Tn+t) = 'X Yi(Ti) + Yn+1(t) ,
i=1

. n

z (Tn+t) = .Z zi(ri) + Zn+1(t) s
i=1

*
W (Tn+t) = n+l(t) 3

*
so that Wx(t) = X(t) + Y (t) - Z*(t) >0 for all t > 0. The iritial
time interval [O,TI] is a period of output control only. There is an
initial output of size Z*(O) = ZI(O) = [X(O)-S]+, and during the

*
remainder of the period the cumulative output 2 = 2 increases in the

1

minimum amounts necessary to maintain X-Z, < 8., The controlled process

1
W, = X-Z, has state space (-»,8] and W,(0) = [X(0) A S], and it is

known to behave as the Brownian Motion X modified by an upper (instan-
taneously) reflecting barrier at S, (We shall use this fact later with-

¥*
out further comment,) The period ends when W = W, hits zero, Each

1
subsequent interval of the form [T2n’ T2n+1] with ne 1t is similarly
¥
a perjod of output control only. The controlled process W starts in
*
state S tbe cumulative imput Y remains constant, and the cumulative

output 2 increases in the minimum amounts necessary to maintain

W X+Y -2 -8,

Each interval of the form [T2n+1’ T2n+2] is a period of input
¥*
control only. The controlled process W starts in state zero and
behaves as the Brownian Motion X modified by a lower reflecting barrier

*
at zero, The cumulative output Z  remains constant, and the cumulative

I

*
input Y increases in the minimum amounts necessary to maintain W > 0,

12




T ge? g T

. L aealaagm o
— e sk e

The period ends when W hits S, 1In total, W* has state space {O’S]

and behaves as X modified by reflecting barriers at both boundaries,

Observe that (Y*’ Z*') is an x-admissible policy for every

starting state x > 0, We wish now to calculate
. % ’ * -
ﬂﬂ;EJmY)-MM)J, x>0 .
As a first step, it is immediate from the construction that

(3) £(x) = (x-S) + f(8) for x > 8

Assuming now that X(0) € |0,S], we define

T
1
e -t -OTq -

£,(x) = Ex[aé e Z,(t)de + e Zl(Tl)] s 0<x<S§,

-CZTl
A(x),Exe , 0<x<S

*x

Remembering that Y (t) = 0 if 0 <t < Tl’ it follows easily from our

construction, the strong Markov property of X, and the definition of
R, j that

-(xt P

. - * X
Y frxy  flix) + GE | e LZ(t)-Z(Tl)-kY(t)]dt

. . =0Ty *
( L 5 T
f (%) v OE e £(W ( l))

xlix) + wAlx) £10)

’ —_—

Sadaiitah's iadili » o ebeh e [PV .‘_...J




B o il ot .- % € AN A i K g o

< = N i

)
4
|

TR

AS

3

by RIS

bRl b i S A ¢ S A R s
N

&

¢

R R

- S A PR

R

PR

Now to solve for f, we recall that Wl(t) = X(t) - Zl(t) for 0<¢<T

and X(Tp) = 2,(T,) since W.(T,) = 0. Thus

1

B!

-0t
(10) £,(x) = CE_ {) e

-a’[‘l

(%(e) - W (0))de + B e T x(T))

B

for 0 <x<S. Defining H(x) = E_J e 9t W (t)de for 0<x<S,
0

Proposition 3 and (10) give us
(11) £,(x) = x + ull - A(x)}/a - oHi(x) , 0<x<S,

Recall that T, = inf(t >0 : Wl(t) = 0] and that W, behaves as the

1 1

Brownian Motion X with an upper reflecting barrier at S, Then standard
results for the first passage times and potentials of Markov processes

(in our case wl) show that A and H satisfy the differential equations
(12) & A(x) - 0A(x) = 0 and x + SHx) - Gf(x) =0, 0 <x<S§,
with the boundary conditions

(13) A(0) = 1, H(0) = 0, and A'(S) = H'(S) = O

Combining (9) - (13) we find that f satisfies

(14) $(x) - af(x) =0, 0<x<S§, and £'(5) =1.

,

by

b e

Py




Furthermore, there is a precisely symmetric argument, {(defining a new

sequence of stopping times Té such that the initial period [0, TAJ

is one of input control only when O < X(0) < §) to show that the second

boundary condition is
(15) £'70) = k .

Using standard methods, the unique solution of (1l4) and (15) is found to

be

(r-B)x _ o= (r+P)x 0<x<S§

s — —_ ’

{ 16) f(X) = Qe

where the constants a and b are chosen to satisfy the boundary

£'(0) = k and £'(S) = 1. Elementary computations then

conditions

give

S -rS. . -vS,
C17) a = (eB - ke’ )/ (v-B) (eYs _e Y ),
(1%) b - (keYs - eﬁs)/((+6) \eTS - e‘Ys)

- : . + . . .
Proposition ¢. The function f :IR° - R is concave, increasing and

twice continuously differentiable with £(S) = /&, Furthermore,

Sfix) - wf(x) <0, 1< f'x) <k and f(x) < (u/@- 8) + x for all

x >0,

2

‘‘‘‘

<o T 2 o i S
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Proof: From (3) and (14) it is immediate that f' exists and is continuous

on RY., For 0<x <S we differentiate { 16) twice to obtain

(19) £h(x) = a(r-p)% el TPIX | p(yp)? on(1#8)x

Setting this expression equal to zero, multiplying through by exp(Bx),
and substituting (17) and (18) for a and b, we find that £"(x) =0
if and only if (7) holds with x in place of S, Thus f£"(S) = O with
S chosen to satisfy (7). Clearly f'(x) = 0 for all x >8§ by (8), so
£ exists and is continuous. Since |B| < v, it is clear from (18) that
b > 0. Since f'"(S) = 0, it then follows from (19) that a >0 and
hence that f" 1is strictly increasing on [0,S]. Thus £"(x) <O for
0 <x <8, and it follows from (8) that f is strictly increasing and
concave on R". Since f'(0) = k and f'(x) = 1 for x > 5, this
implies that 1 < f'(x) <k for all x >0. With f'(S) = 1 and

£"(Ss) = 0, we have Af(S) = u. Since 4f - af = 0 on [0,5] this

gives us f(8) = p/Q, Then (8) yields 4f(x) = u for x > S, implying

Sf(x) - af(x) = u - o[/ + (x-8)] = -x-8§)

+ N
for x >8, so 4f- af <O on R'. Finally, f(x) = (p/ad - §) + x
for x > 8 by (10), so the concavity of f gives f(x) < (u/@ - 8) + x
for x >0

Remark. As the proof shows, f is continuous regardless of how one

chooses 8, but f'" is continuous {f and only if S 1is chosen to

’

satisfy (7).

16
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Theorem 1. If x >0 and (Y,Z) is an x-admissible policy, then
Cxx
Ex R(Z) - kEX R(Y) < f(x). Thus the policy (Y , Z ) constructed above

is x-optimal for all x >0,

Proof: Let x >0 and (Y,Z) be fixed. When we speak of almost sure
convergence, this refers to Px' The idea of the proof is essentially

to approximate Y and Z by (random) step functions. Given € >0,

we define an increasing sequence of stopping times Tn (hoping the

é reader will forgive this re-use of previous notation) by setting TO =0

z and

i

g Tl ™ inf{t > T ¢ Y(t) > Y(Tn) + € or 2(t) > Z(Tn) + € or t = Tn+e‘
&

S

for n ¢ I, That each Tn is a stopping time follows immediately from

-

the fact that Y and Z are nonanticipating functionals., Furthermore,

f 0 < T1 < T2 < +-+ because Y and Z are right continuous. Finally,
k)

i T —ow almost surely as n -« because both R(Y) and R(Z) are

i n

almost surely finite. Let

R

yo = Y(0) + €, z0 = Z(O), qO = ZO - kyo ,

T

8y = 4y + EX(0) + v - 25) - E(X(0)) ,

and then for n ( L

k' &
=
- 4
] B, | ¢

e ————————— it 2 ot o e St = g s s ,
3 = ‘ . . o . . .

K e BLETOR H
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Ynel = Y(Tn+1) B Y(Tn)’ Zae1 © Z(Tn+1) i Z{Tn) ’
n n
= v = Y(T - Y - 7
Y o= 7 oy, ( n) + €, z o= Yoz - 7(Tn) ,
i=0 i=0
Dn = Yn - Zn s 9, % 2, - ky
n+l .
An+l - {qn+1 + f(K<Tn+1) + Dn+l) ) f(X(Tr‘url) M Dn)] ’
-QTn+1 -aty
B =e f(X(Tn+1) +D) - e E(X(T ) + Dn) .

With these definitions, we have

n -OT, -aTn
A+ % B, =Y e ‘q +e E(X(T_) + D) - £(X(0)) .

From our construction and the fact that (Y ,Z)} is x-admissible it
follows that X(Tn) + Dn.Z € and X(Tn+1) +D_ >0 almost surely for
all ne¢ I, Since 1< f'(x) <k, it is then immediate that A <0
almost surely for all n € I. Furthermore, we can use Proposition 4 to
show EX Bn < 0 by making the following associations, Let f be as
defined above for x >0, and define f£(x) by (16) for x < 0. Then
Proposition 8 shows that f satisfies the hypotheses of Proposition 4,
Let T = Tn+1, T, =T, and Z=0D = Y(Tn) . Z(Tn) + €, so Z |is

measurable 3 - Then Proposition 4 gives E B < O, it following
« X n~

immediately from Propositions 6 and 8 that both expectations exist and

are finite. Thus, taking the expectation of both sides in (20), we

have




n -uT -aT

‘21 < f(x) -
(21) Ex 7 e q; = £x) Ex e f(X(Tn) + Dn)

n

Noting again that Dn : Y(Tn) - Z(Tn) + €, it follows from Propositions 7

TR

and % that the second term on the right side of (21) goes to zero as

n -»w,  giving us

o Y
(22) E 5 e g s f(x)
i=0
#‘ #/
Let Y'(t) =Y and 27(t) = Z for T <t <T and n ¢ I, From
) n n n — n+l

our construction it follows that (Y#, Z#) is an x-admissible policy jé
L &
with :
Y(t)SY#(t)SY(t) + ¢ and  Z(t) -egz#(t)_<_2(t) ;
for all t > O, from which we have K
(23 R(Z) - KR(Y Lge < rZD - (Y’ 3
(23) (Z) - kR(Y) - (lrkje < R(Z") - KR(Y") 1
50 -QT. 1
F e 1q _ R(Z) - KR(Y)
1 — 4
i=0 -
Thus E _IR(Z) - KR(Y)] < £(x) + (1sk)e by (22) and (23). Since ¢ >0 -
| &
was chosen arbitrarily, the proof is complete, % 43
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4, The Control Problem with One Fixed Charge

For our second problem, we define an x-admissible policy (x > 0)

to be a pair of controls Y ¢ S, and 2 ¢ Cx such that (5) holds, We

*

*
say that an x-admissible policy (Y , Z ) is x-optimal (x >0) if

)

for every other x-admissible policy (Y,6Z),
*. * K ., e *
E_[R(Z') - KR(Y") - KR (Y )] > E_[R(Z) - KR(Y) - KR (Y)] .

As in the previous section, let S be the unique positive solution
of (7), and let a >0 and b >0 be defined in terms of S by (17)
and (18) respectively. (Recall that we showed a > 0 in the proof of

Proposition 8.) Now let s be the unique positive solution of
(2L) all - eV B)Sy L prO*8) Lyl ks

Elementary calculations show that the left side of (24) is strictly

convex and increasing with value zerp at s = O, and that its derivative

increases without bound as s increases, Thus there is i fact a
unique solution s,

With X(0) >0, we set Ty = Tg = 0 and then define Zl(t),

W,(t) and T, = T, in terms of X and the positive constant (s+8)

exactly as they were defined in terms of X and the positive constant

S in the previous section. Then for n = 2, 3, ... Ilet




Z(t) = Lsup{Xn{u) ;0 u L, - 5.5, vt 20,

w7 N
W) = X (t) - 20 ¢ >0

I o= inf{t >0 : W /¢ 0j and T - T +o0
n - n n n-1 n

Again it is easy to show that

PO - T, < T, T < e+ 5a)=1 for all «x

1AV
o

and for n . I and t . {0, 1 ) we define
n+l

Z (t) - " Zi(Ti) + anl(t) s %
il ~3

. E

* * . .
and W {t) = W (t), so that W (t; . X(t) + ¥ (t}) - Z (t) for all

n+l
¥
t > 0, The behavior of the controlled process W . Wl during the
initial interval [O, Tl) is as described in Section 3 except that f

now the upper reflecting barrier is at (s+8), Each subsequent time

begins with a jump of s 1in the cumulative input

interval [Tn, Tn+1) ;?

* * .. -
Y , this moving the controlled process W from state zero to state s, B

.x'.
During the remainder of the period, Y remains constant and the cumulative
* . . . s 3
output Z increases in the minimum amounts necessary to maintain
*

*
W < (s+S). The period ends when W hits zero and jumps upward by s

again,
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Using arguments very much like those employed in the previous

section, it is straight- forward to show that the function

satisfies &g(x) - ag(x) = 0 for O < x < s+§, with g'(s+5) = 1,
g{0) = g(s) - K- ks, and g(x) = g(s+S) + (x-S-s5) for x > 548,

Again the unique solution has the form
(25) g{x) = a e(Y_B)x - by e_(Y*PB)x for 0 <x < s+8 ,

where the constants 3 and b0 are selected to satisfy the boundary
conditions g'(s+8) = 1 and g(0) = g(s) - K - ks. The reader may

easily verify that, with s chosen to satisfy (24), the selection

(26) a, = a o (7-B)s and by = b (T+B)s

meets the boundary condition g(0) = g(s) - K - ks, We then further
have (defining [ by (16))

(27) g{s+x) = a e(r-B)x - b e-(Y+5)X = £(x) for 0 < x < S,

In Section 3 we showed that f'(S) = 1l so our second boundary condition
g'(s+8) = 1 1is also satisfied and the complete solution for g is

given by (25), (26) and g(s+S+x) = g(s+8) + x for x >0,

N T T N g YR O AT



Proposition 7, The fuuction g : R 5 R is concave, increasing and

twice continuously differentiable with g{s+8) - ./, Furthermore,

&g x) - 2gix) <0, g'ix) > 1 and g(x) = (u/G - s - 8) + x for all

—_ ’

x > 0. Finally, + x+y) - g{x) © K+ ky for all x >0 and y >0,

Proof: Clearly a. - 0 and bo >0, and differentiating (Z%) Lwice

0

gives

(%) g'(x) - ao(Y-B)2 Lr-B)x bO(Y+f3)2 R e

1

so g is strictly increasing on {0’ $+5}. We showed in the proof

of Proposition A that f(S) - u/a, £'(S} = 1 and f'"(5) = 0, so (27)

gives us g(s+8) - u/Q, g'(s+S) = 1 and g"(s+§) = O, It then follows

-

as in the proof{ of Proposition ¢ that g 1is concave, increasing and
twice differentiable with &f - «f © 0, Since g'x) . 1 for
® > s+8, the concavity implies g'(x) > 1 for all x >0, Also, we

showed in Section J thar 1'70) . k, so {(27) gives g'{s) . k., From

the concavity off g we then have

12%) gly) - %0, - ky < g(s) - g0) - ks K for all v >
Finally, the concavity of g implics that g{x+y) - g(x) 1is a non-

increasing function of x for all y >0, Combining this with {22)

proves the last statement of the proposition,

s
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Theorem 2. If x >0 and (Y,Z) is an x-admissible policy, then

EXLR(Z) - kR(Y) - KRk(Y)] < f(x). Thus the policy (Y*, Z*) constructed

above is x-optimal for all x > O,

Proof: The proof is very similar to that of Preposition 8, and we shall

only sketch it, We define the sequence of stopping times Tn (again
apologizing for the notation) by TO = 0 and

B - > : Y (t) > Z(
To1 inf{t > T Y(e) > \(Tn) or Z(t) > (Tn) + €

for n ¢ 1. We proceed exactly as in the proof of Proposition 8
except that £ 1is replaced by g throughout, we take Yy = Y(O)’
and we define

n < 1

~z_ -k - K I,
4, “n "a {y >0) >
n
To show that Ap 7~ 0 almost surely with this change in the definition of
q,, we use the fact that y' > 1 and g{x+y) - gix) - K+ ky by
Proposition 3. That EX B <0 for all n tollows exactly as before,

3

Defining Y 1) ¥ and 2Tty o2 for T < ¢ o1 and n I
: n n n - n. 1 ’

we arrive at

EXKR1Z?) Swrieyf) o k2N s T e q, = fix)

4o , . !
But Y/t - Y/t and Z{t) - g'_\'Zf’(t) = Zity yor allot >0, so the

desired result follows directly,
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Consider an inventory and production sys.em hmvolving o single
. type ol dtewm fproduct, and assume chat the cumulative vxcess production
or the item can be reasopably represented by the Brownian Motion
X KXoy, v >0 We bave an omind a situation whore chiere 16 4 non-
) decreasing cumudet ive prodaction process P I S O Grdo9onn-
decrvasing cumulat ive demand process D (Do, O such tlad -1
can be approximated by X, We interpret P ooas the prodoction rvom
regular operations and assume that additional instantancous increases
1n the stock level can be daccomplistied by some irrepular weans  such
ag overtime production or ordering irom an outside vendor. at a cost of
k > 0 dollars per item, We interpret D as the demand from regular
s

customers and assume that unlimited

stock can be sold by irregular means

scrap) at a price of < dollars per
; Y fyeeh, £ 200 and 7 . L
, irregnlar production and cumutlative
i . .
Assuning that alt regalar demand nos
. Dacklogging , the comtrols v and
Lot W X Y v - 2ot s
; vwouming, that incentory holding cos
J
. v W tad that turnre costs
Alse vunted i anterest pate ; 0,
s L midazximtie
9
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additional guantities ot vxeess)

such as sale te a scavenger as
item, where 0 < ¢ k Let

20 denote the camclative
1rregnlar sales respectively,
t be met instantancously - no
Z  wustl be ¢hosen so that the stock
nor-negdative for all ot _\: 0,

ts are continuously incarved at

and revennes are contiatuously

we wish to choose Y and 2 so
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ErcRiz) - KR(Y) - [ e %% n(wlc))de;

Pk kW e

0 i
If h x° hx  for all x > O, then the last term inside the brackets d
4
is just
’ t s ot i
h e IXTt o« Yit) - Z{e)idt = (h/a) [R(Y) - R(Z)] + h [ e 7 Xx(t)de,
Q 0 :
3

Y

Observing that the last term is uncontrollable {(depends on neither Y

nor 2), we then see that the total objective is to maximize (c¢ + h/Q) ER(Z)

- ik -+ hya) ER(Y)., Assuming without loss of generality that c + h/a =1,
this is precisely the problem formulated in Section 3., If the irregular
production process Z is a step function, and if a set-up cost of K >0
is incurred each time that a jump in the irregular production occurs,
then we similarly obtain the problem formulated in Section Lk,

A closely related diffusion model of optimal inventory control
has been advanced by Bather (1966)., In our notation, Bather assumes
« 20 and K >0, and he considers a linear holding cost function h(-).
There is no provision for sale of excess inventory in his model
1Zi+, = Q). The stock level is permitted to go negative {(backlogging
is permitted;, but linear shortage costs are incurred when this happens,
Attentiun is restricted to a simple class of input step functions Y
which jumg by a fixed amount {S-s) whenever the inventory on hand ; 4
decreases to a fixed level s, the objective being to minimize average ‘
cost per unit time over an infinite planning horizon, Other diffusion oS

formulations for problems of optimal control of dams, inventories and

storage systems are given by Bather (lood) Faddy (1374a,b), Whitt (1g73a,b
’ ) b 97 ’ H




Putcrman 1/ and Prisks o1 00 o oall ot these papers, attention

Is rtesivicted to ynon-randomized and Markov) stationdry policies, and

in all but the last therce s a turther restrictiovn to stati nary policies
having a particular strucvture,

As a second applivation, we consider the stochastic cash management
problem, discrete-time versions ot which bave been studied by Eppen and
Fama 1wy, CGivgis [ liwe), and Neave "14/0., Imagine o {irm which
mdintains a cash fund, into which a certain ameunt of income or revenue
is automatically channeled and out of which ovperating disbursements are
made, We assume that the resulting fluctuations in the content of the
fund can be adequately represented by the Brownian Motion X, Additional
instantanecus increases in the content of the fund can be accomplished
by converting securities into vash, but there is a transaction cost of
k > 0 dollars incurred for each dollar of securities so converted.

Also>  cash from the fund can be converted into securities at a trans-
¢ >0 Finally an

action cost of dollars per dellar so converted,

spportunity loss of h » 0 dollars per unit time is suftered for each
dollar that is held within the fund, Denoting by Y{t) the cumulative

conversion of securities Lo cash up to time t, and by Zit} the cumulative
conversion cash o securities, we assume that the content of the fund

must be kept non-negative.  Then the problem is to find an adwmissible
policy Y, 2%  that maximizes {h/w - ¢) ER(ZY - (hya - k) ER/Y), where

the linear opportunity cost {holding cost) has been converted as in the

previous example, [f < - hyz and ¢ - k, then we may assume without
loss ot generality that b/x - ¢ 1, and we have precisely the problem
formalated in Section 4. IV the conversion of secaritics to cash entails

By
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both a fixed charge K > 0 and the proportional charge k, then we get
the problem formulated in Section 4.

Constantinides (1976) has examined both of these cash management
problems with the objective of minimizing average cost (rather than
expected discounted cost) over an infinite planning horizon, and he has

further considered the case where both types of conversion entail both

fixed and proportional transaction costs, (See Section 6.) His results

are very similar to ours, but the methodology employed is quite different,

and we do not fully understand his proofs,.

For both inventory control problems and stochastic cash manage-
ment problems, one finds that the diffusion formulations discussed
above are much more tractable than more traditional (usually discrete
review) models. For our particular problems, we have shown that the
optimal policy (from a very broad class of potential policies) has an
extremely simple structure, and the assumption of an underlying Brownian
Motion further permits explicit determination of the relevant critical
numbers., With traditional formulations, even the structural results may
fail, and the computation of optimal policies is typically a complicated
matter, See Girgis (1968) for a demonstration of this in the case of
cash management,

On the other side of the issue, it simply may not be reasonable
to represent the underlying (net demand or net production) process by
a Brownian motion, Bather (1966) suggested that a non-decreasing demand
process be approximated by Brownian Motion with positive drift, but as
Whitt (1973a) has pointed out, this is not a circumstance where one

expects a good approximation, In each of our applications, we have

28
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emphasized problems where the underlying process X represents the

difference of two non-decreasing processes, and in this circumstance

various theorems on the (weak) convergence of stochastic processes may
be invoked (with further assumptions on the parameters of the relevant
processes) to justify the Brownian approximation. See, for example,
Harrison (1975). Even when this can be done, there remains the problem
of justifying one's diffusion optimization problem as a reasonable
approximation to the original optimization problem. If one restricts
attention to policies which are explicit functionals (and continuous in
the appropriate function space topology) of the underlying process, we
believe that this might be a manageable task in the rather restrictive

setting of our model, but the issue will not be pursued further here,

6. Concluding Remarks

If for each t >0 we define }E to be the sub-c-algebra

generated by (X(u), O

A

u < t), then it follows from the stationary,

b

independent increments property of X that X{(t+u) - X{t) 1is independent

of J% for all t >0 and u >0, Thus we may take Kt = ﬁl in our
formulation (Section 2), and in gen.ral we must have J% < 3 for all

t >20. If acontrol policy (Y,Z) has the property that Y(t) and

Z(t) are measurable g for all t 2> 0, we shall call it a non-randomized

policy. Given a non-randomized policy (Y,Z), let % _  be the o-algebra

t
in §, generated by X(t) + Y(t) - Z(t) for t >0. We shall say that

(Y,2) 1is a Markov policy if Y(tsu) and Z(tsu) are measurable v,
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for all t >0 and u > 0. Finally, we shall say that a Markov policy
(Y,2) 1is stationary 1f the conditionzl distribution of (Y tsu) - Y(t),
Z{t+uj) - Z(t); u >0} given N} depends only cn X(t) « Y{t) . Z/t}

and not on t (t >0; All of this terminolegy ccnforms with the
standard usage in {discrete time) dynamic programming, appropriately
adapted to our setting. Roughly speaking, a policy (Y, ,Z; 1s non-
randomized if the contrcls applied up to time t depend only on the
history of the underlying process X wup tc time t 2and not on any
other "irrelevant" information contained in 3 - Tt is Markov 1f the
controis to be applied after time ¢t depend on the history up to time
t only through the current "state of the system" W(t) = X(t) + Y(t) - Z(¢t)
and 1t 1s stationary if this dependence on W(t) does not involve ¢,
As the reader may easily verify, the policies that we have shown to be
optimal for our two problems are both {non-randomized and Marko>v,
stationary policies.

A natural successor for the two problems considered in this
paper is one where both the input control Y and the output contreol
Z wmust be step functions, and thzre are :different) fixed costs
associated with both 1unput jumps and cutput jumps Similar {and much
more complex; problems of pure impulse (jump) control have been con-
sidered bv Bensoussan and Licns (1973 1375 and by Richard (1976),
but the method of prouf us=2d here can also be extended to the case
of twe fixed charges. As we shall demonstrate in 2 future paper, there
exists an optimal solution for this problem which involves only three

critical numbers, but the computation of those critical numbers is

quite complicated 1f we allow one (respectively, both) of the fixed

30
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charges to approach zero, we find that the optimal controls approach
those displayed in Section 4 (respectively, Section 3) almost surely.
Thus, roughly speaking, each of the problems treated here can be obtained
as the limit of problems involving two fixed charges.

Our problem with no fixed charges (Section 3) can also be approxi-
mated by a formulation of the type considered by Mandl (1968) and Pliska
(1973). Suppose that the non-decreasing controls Y and Z are both
required to be absolutely continuous and non-decreasing with a density
bounded by ¢ > 0. We cannot then require that W(t) = X(t)+Y(t)-2(t)
remain positive, but we suppose that a large penalty cost of M (dollars
per unit time) is continuously incurred so long as W(t) < O, It can
then be shown that there are critical numbers a and b with 0<a<b <o
such that one optimal policy is the following. When W(t) < a, the con-
troller increases Y at the maximum permissible rate c, when W(t) > b
he increases Z at rate ¢, and when a < W(t) <b he does nothing,
1f we let ¢ >o we find that a -0, b S and the optimal controls
converge almost surely to those displayed in Section 3.

Having indicated in the last two paragraphs that our problems can
be approximated in either of two ways, we emphasize that either type of
approximate formulation is harder to solve than the problems as we have
stated them, Also, we repeat that the optimal controls displayed in
Sections 3 and L4 are neither absolutely continuous nor step functions,

We are not aware of any previous formulation of a stochastic control

problem which permits controls of the type that we have found to be

optimal,
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"Optimal Control of a Brownian Storage System", by J. Michael Harrision
and Allison J, Taylor
F Sor ®
N Abstract g ’\\\\\
onsider a storage system (such as an inventory or bar%\?ccount) whose

content fluctuates as a Brownian Motion X = {X(t), t > 0] ’,’in the absence of
any control. Let Y = {Y(t), t >0} and Z = {Z(t), t > d} l non-
decreasing, non-anticipating functionals representing the cumufative input
to the system and cumulative output from the system respectively, The
problem is to choose Y and 2Z so ac to maximize expected discounted
reward subject to the requirement that X(t) + Y(t) - Z(t) 2 0 for all
t >0 almost surely. In our first formulation, we assume that a reward of
one dollar is received for every unit of output, while a cost of k > 1
dollars is incurred for every unit of input, We explicitly compute an
optimal policy involving a single critical number, In our second formula-
tion, the cumulative input Y is required to be a step function, and an
additional cost of K > 0 dollars is incurred each time that an input
jump occurs, We explicitly compute an optimal policy involving two
critical numbers, Applications to inventory/product:ion control and

stochastic cash management are discussed.
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